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In the monograph of Targ [ 1 ] the flow of a viscous incompr9ssible fluid 

is treated in terms of approximate differential equations which take the 

viscous and transport terms partially into account, and solutions are 

given for a number of problems. The solution for the development of the 

flow in a circular cylindrical pipe shows a satisfactory agreement with 

the results of experiments, not only with respect to the length of the 

entrance region, but also with respect to the development of the velocity 

profile at stations in the entrance region. The same approximate equations 

were used by Ovchinnikov [2 ] to solve the problem of the development of 

the flow in a diffuser for an arbitrary velocity distribution at the 

entrance. In this case the calculated results were well verified qualita- 

tively by special experiments carried out by the author, even for Reynolds 

numbers as large as 25 x 10’. 

The cases just described suggest that suitable approximate equations 

might be set up to take the nonlinear terms partially into account, and 

that these equations might be used for the solution of various problems 

in the flow of a viscous heat-conducting gas. In the literature such 

problems have so far been treated by a method used by Schiller [3 1 to 

study the flow of an incompressible fluid; i.e. by joining the constant- 

velocity profile in the core with the velocity profile determined separat- 

ely for the boundary layer (for example, in the article of Kaul and Brown 

[4 I). Solutions for these problems on the basis of approximate linearized 

equations have not yet been presented in the literature, and such solu- 

tions may have theoretical and practical interest in the design of 

diffusers for engines on moving objects and in the calculation of certain 

losses associated with gas flow in ducts and diffusers. 

1. We will assume two-dimensional stationary motion of an ideal gas 

having the Clapeyron equation as equation of state and having constant 
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specific heats. By analogy,with another paper 

dimensionless variables and parameters in the 

x = lx,, y = ely,, u = U&, V 

r51, we will introduce 

following manner; 

= EUO% P = POP1 

P = POPl, T = TOT,, IA = [Lop11 x = XOXl (l-1) 

Jf2 zrz uEpo PoUol 
ypo’ 

R = _, P I*ogc, = - 
PO X0 

r=C” A “ii 
Ccl ’ 

- = (r---1)fw 
CpgTO 

Using (1.11 and neglecting body forces, the differential equations 
for a viscous heat-conducting gas take the form 

Rasp, (ul 2 + v, 2) = 

PI = PIT,, PI= ~1 VA XI = XI VI) 

‘lhese differential equations (1.2) are identically satisfied by a 

strictly parallel flow with constant velocity CJO and with constant-state 

variables, and for this case we may put 

u1 = 1, Vl’O, PI= 1, p1= 1, T1=l, p.== 1, x1=1 (1.3) 

We will now restrict ourselves to cases in which the presence of solid 
walls exerts a relatively small disturbing influence on the departure of 

all the variables of the gas flow from their values in the undisturbed 

stream. If c is a small parameter, and if the dimensionless variables R, 
M, and P are assumed at the outset to vary like powers of c , then the 

solution of equations (1.3) may be developed as infinite series in powers 

of the small parameter C. We will assume that in certain special cases 

we may terminate these series with terms containing the first power of the 

small parameter; that is, 
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Ul = 1 + EU’, Vl = Ed, Pl = 1 + EP', p1= 1 + EP' 

T1= 1+ ET’, p1 = 1 + Ep’, Xl = 1 + EX’ 
(14 

We will further assune that the characteristic parameters have the 

following orders of maguitude; 

R-f, (1.5) 

Substituting equations (1.41 into (1.21, taking account of (1.51, and 
equating the coefficients of terms linear in the small parmneter c , we 
obtain the following equations; 

au’ 1 apI 1 aw -= 
ax1 --- --, YM a axI + GR ay’; 

aT' -f--i apt 1 aaT’ -= -- __ 
ax1 Y axI -I- tma ay; 

p’ = p’ + T’ 

(l-6) 

Using the equation of state (1.61, the density p may be eliminated 
from the continuity equation, which finally takes the form 

(l-7) 

Returning in equations (1.6) and (1.7) to the original dimensional 
variables; that is, putting 

xl ;v y,+ &---o V =- 
9 EUO’ 

2)’ = - 
c”U0 

P 
LP-PO, T’= T--o 

OPO YT&-) PO = gp,G v To (14 

we obtain the following approximate linearized equations of motion for a 
viscous heat-conducting gas; 

If we compare the approximate equations (1.9) with the familiar equa- 
tions for the plane boundary layer in a viscous compressible gas ([ 6 1 , 
p. 2821, we find that in our equations the transport terms for u, p, and 
T are partially accounted for in the manner of Oseen; moreover, the 
coefficients P and K are taken as constants, and the terms for the dis- 
sipation of energy are discarded. Equations (1.9) are therefore rather 
rough approximate equations, and their solutions will not be as accurate 
for phenomena in pipe floN or in thin boundary leyrs as the solutions of 



the corresponding boundary-layer equations. But a similar conclusion con- 
cerning the mughmss of the ~~~~at~on to the original equations 
applies for the equations employed in the solution of certain probfems of 
the thee-di~nsiona~ boundary layer for the flow of an incompressible 
fluid. Nevertheless, the solutions obtained in these problems, as was 
shown above8 are not in bad agmenen t with the results of experiment or 
with the solutions of more exact equations. Therefore we may assume that 
for a number of problems of gas flow in thin layers or in pipes the solu- 
tion of equations (1,91 will give a correct picture of the flow, not only 
in a qualitative but also in a quantitative way, 

For problems concerning the boundary layer near a body, the pressure 
p entering into (1.9) may be considered a given function of the coordinate 
z measured along a contour of the profile. For problems mxxcerning the 
developer of the flow in pipes, the boundary conditions for the lateral 
velocity II allow a differential equation for the pressure to be obtained. 

2. If we assume t&at the motion of the gas is axially symaetric and 
if we take the transversal velocity component as zero, then the approxi- 
mate equations analogous to f1.9) will have the following form; 

We will apply these approximate equations (2.1) to a special case, 
namely to a circular cylindrical pipe with an open leading edge. Let the 
pipe move in a fluid with velocity U, parallel to its axis of symmetry. 
Let the pressure inside the pipe at a certain distance from the entrance 
be maintained by some means at a value p2 smaller than the pressure p. 
in the fluid far ahead of the pipe entrsnce. Because of the evacuating 
effect of the pressure difference, a certain flow will arise in the fluid 
ahead of the leading edge, as well as a relative motion for the fluid in- 
side the pipe. If we interchange the motion of the fluid and the pipe, 
then the flow at an infinite distance frcm the leading e of the sta- 

tionary pipe will have a velocity U0 in the direction of the positive 
x-axis; the pressure will be pO, and the temperature will be 7’,; this 
temperature till fix the coefficients &0 and K~. After a sufficient, titer- 
val of time has elapsed since the start of the motion, steady velocity 
and temperature distributions will be established at the entrsnce to the 
pipe (x = O), Depending on the distance from the leading edge, the nature 
of the velocity, temperature and pressure distributions across the section 
will change as a resut t of the no-slip condition together with thermal 
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effects at the walls of the pipe, 

If we consider a station in the pipe close to the entrance, and if we 
asme that the relative pressure difference (pO - p2 l/p0 is mnall, then 
the effect of the tens discarded in obtaining equations (1.9) from the 
corresponding boundary-layer equations may be considered small. With 
these assumptions there is sane justification for applying the approximate 
equations (2.1) to the flow of a gas in a cylindrical pipe in the example 
just considered. 

If we consider the flow of a gas in a pipe laid in the ground, then 
it is necessary in addition to allow for thermal effects of the earth on 
the walls of the pipe. If we denote the temperature of the pipe at the 
entrance by T and the temperature of the ground by T2, where it is 
assumed that > T2, + then we may suppose as a first approximation that 
the temperaturd of the pipe wall varies according to an exponential law 
(analogous to the law of Shukhov for oil pipe lines); that is, 

Tm = T, + (T, - T2) exp (- P G) (2.2) 

where a is the radius of the pipe and 6 is a dimensionless coefficient 
to be determined experimentally. 

For simplicity we will assune that the velocity and temperature dis- 
tributions are uniform at the entrance, at which point the boundary con- 
ditions will have the form 

U= Ul, T = T,, P = Pl for x=0 andO<r<a (2.3) 

Ihe no-slip condition and the axial symnetry of the flow may be 
exhibited by means of the following equalities; 

u = 0, v, = 0 for r=a andX>O 

v, = 0, 
au 
itr= 0, $=o 

(2.4) 
for r=Oand x>O 

If we change to dimensionless variables and put 

z = q, r = ar1, U= UC&, v = U,,q, 3’ = TOT, p = pop 

PO’ UI =R, s&2, $++l)M2, t!!=P 
(2.5) 

Pr YPO 

then the differential equations (2.1) and boundary conditions (2.3), 
(2.2) and (2.4) take the following form: 
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u, = 0, for r=O and+x>O 

We will solve the system of linear equations (2.6) with the boundary 
conditions f2.7) with the aid of the method of operational calculus, We 

Put 
Q) CO w CO 

c 
e-~~W&l 

0 

= $ , 
5 

e-xx, t+dx,= q > 
\ 

y”A%I - p&q= q f 
s 

e-q&s $ 

0 0 0 

(24 

Considering the first of the boundary conditions (2.71, we will have 

%hen we construct the Laplace transfomatim of the equations (2,6f 
and the boundary conditions (2.71, taking into account 12.8) and (2,9), 
we obtain the following transfomed equations and boundary conditions; 

Ri\ ~~_~~~~~~_~)l=~~~~~ 
i rl dF1 
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‘Ihe solution of equation (2.10) corresponding to the first boundary 

condition. (2.11) will have the form 

(2.12) 

U*+ 2 -1_r,2 ( ;++g - p’) - siu* + T*) ?-I dr, 
0 

Using the second boundary condition (2. ll), we obtain the following 

expressions for the transforms of the velocity components and of the 

temperature; 

(2.13) 

The recurrence formula 

LX 

s 
1, (CC) xdx = x1, (x) 

0 

(2.14) 

is well known in the theory of Bessel functions. Evaluating the integrals 

(2.12) with the aid of (2.13) and (2.14) and using the boundary condition 

(2.11) for the lateral velocity component, we obtain the following equa- 

tion for the transform of the pressure: 

2u1 I, (Vxx) 3 Tz-Tl 1 I, (Urn) -___--___ .- 
p*_+ 

u,JGX I,(?AH) +A+@ T, vim r,(vw?) 
-- (2.15) 

I+ 2(Y--1) II (VAPK) 1 - 
v/APK 

1-2 IO (VWR) - wJ C VhR 11 (V’AR-- 1 I,(V/ 

‘lhus the complete solution of the transformed problem is contained in 

equations (2.13) and (2.15). W e may invert the transformation to obtain 
the original functions, generally speaking, by the method of decomposition 
into simple fractions, provided that we can somehow find the roots of the 

denominator of (2.15). 

Inasmuch as the original equations (2.1) only describe the flow of the 

gas in the entrance region with a certain degree of approximation; that 

is, for not too large values of the coordinate x1, and inasmuch as small 
values of the factor z 1 in the exponent of the transformation formula 
(2.8) correspond to large values of the transformation paraneter A, then 
with a certain error we may substitute for the Bessel function of imaginary 
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argusmsnt in (2.15) the first term of LUI asymptotic expansion. ‘Ihat is, 

we may put 

Substituting (2.16) in (2.17), we obtain the 
expression for the transform of the pressure; 

u1 1 Ta - 7’1 

following approximate 

banding the right-hand side of (2.1’7) in fractions, we obtain 

(2.18) 

nbere 

a=-- (y--1)M=+I/;ij 
9-&J* 

2yu,w 1 c,=---- 
UoVR l-M= ’ 

(2.19) 

Passing fmm the transform (2.18) to the original function, using the 
formulas (2.5) to change from dimensionless to dimensional variables, 

and introducing the usual notation 

.I= 

erf (x) = + e-@du, 
5 

erfc (s) = 1 - erf (s) (2.20) 
* 

0 

we obtain the following approximate formula for the variation of the 

pressure in a gas in the entrance section of a circular cylindrical pipe; 

As an imnediate check we may satisfy ourselves that equation (2.21) 

satisfies the condition (2.3) for the pressure at the pipe entrance. 

If the gas flow ahead of the pipe entrance is subsonic; that is, if 

the inequality 
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l-Ma>0 (2.22) 

is satisfied, then the quantities a and C, defined by equations (2.19) 

will be negative, and at the ssme time we will have 

erfc(a 1/T) = 1 + erf (I a 1 I/T) > 1 

In this case the second term of the right-hand side of (2.21), repre- 

senting the influence of viscosity on the pressure variation in the pipe, 

will always be negative. ‘Ihus if the entering flow is subsonic the 

pressure in the entrance section of a circular cylindrical pipe will 

always be reduced by the action of viscosity. ‘Ihis situation is well known 

in gas dynamics ([ 7 I , p. 1321. 

In order to determine the net sign of the third term in (2.211, re- 

presenting the effect of cooling by heat transfer at the walls on the 

pressure variation in the entrance region of a cylindrical pipe, we will 

resort to an expansion of the entire expression in square brackets as a 

series in powers of the argument. If we stop with the second terms in the 

expansions for the individual factors, we obtain 

lhe net sign of the third term in (2.21) depends on the sign of the 

factor C2 and of the parameter 8. If the inequality (2.22) is satisfied, 

and if it is assumed that the walls are cooled (‘I’* < T1, /3 > 01, then the 

net sign of the third tens will be positive. Consequently, if the flow 

into the entrance of a cylindrical pipe is subsonic, heat removal from 
the gas by cooling at the wall will lead to an increase in pressure in 

the entrance region of the pipe. lhis situation also appears to be 
generally known in gas dynamics (18 1 , p. 53). 

lhus the qualitative conclusions from formula (2.21) agree with the 

familiar formulas of gas dynamics. Besides these qualitative conclusions, 
however, equation (2.21) makes it possible to compute the pressure 

variation as a function of the distance from the pipe entrance, a cofn- 
putation which is not possible using the formulas of gas dynamics. 

In deriving the approximate formula (2.21) for the pressure we used 

the leading term of the asymptotic formulas (2.16). As can be seen from 

these formulas, the Reynolds number appears in the argument of the Bessel 

function. Gnsequently, the larger the Reynolds number the more accurately 
will the leading term of the asynptotic fonnulas represent the value of 
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Ekssel functions, and the greater will be the length of pipe for which the 
approximate formla (2.21) will be accurate for the pressure. In such 
cases we may use this fonmla to estimate the length 2 of the entrance 
region of the pipe, or the length required for the pressure to change 
fran the given value pi at the entrance to the given value p2 at the end; 

01 p*- Pl - 
PO 

C, 1 - exp a: 
I 

erfc(a J$)]+CS( l-&S[exp$- 

-/3exp$ erfc(a J/-;)+al/gexp$erf(I/Ba)]) (2.23) 

Provided that the length 2 of the entrance section is not large can- 
pared to the radius a of the pipe, we may expand the various functions 
entering into the right-hand side of (2.23) in pewers of their argwnents. 
In particular, if we terminate this expansion of the right-hand side of 
(2.23) with terms containing Z/u to the first power, we obtain the follow- 
ing approximate formula for the length of the entrance section; 

1 
a=- 

:- [ Cl + && c, I-” p-=&J-y” (2.24) 

We will now return to the formulas (2.13) for the transfons of the 
velocity and temperature. Inasmuch as the inverse transform for the 
pressure has already been found in approximate form, it is sufficient for 
the determination of the inverse transforms for the velocity and tempera- 
ture according to (2.15) to find the inverse transforms of the ratios 

lo (r, VKF) IO (r,VhPR) 
lo (VAT) ’ lo (V APZ?) 

and then to employ the convolution theorem of the operational calculus 
([ 9 I, p* 13). For an approximate determination of the inverse transforms, 
either expansions in powers of the argument or the asymptotic fornulas 
(2.16) may be used. 

In the neighborhood of the pipe wall we may put 

I” (r, v/hH) 
I, (V XF) 

z+exp[-_%(I -$)I 

‘lhen we obtain fran equations (2.13) 
u1 

T*+++(p’--)+ TTr;l +xp[-(1 --+)l/h~--- 
0 0 

-y--i 

y v n 

exp[-((1 -r,)I/hPH] 
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The image function exp(- a@ is the transform of ertc(a/26) ([9 I, 
p. 152). Using the convolution theorem, we obtain the following qproxi- 
mate expressitms for the velocity and temperature in the boundary layer 
near the walls of the pipe in the entrance region; 

U= u1 - f=$ u, - U’ I/Ferfe [( -$)2z]+ 1 

(1 - P,) m p - 
21/2, ppldE 3 (2.25) 

For the region near the pipe axis (rl = 0) we may use (2.16) as de- 
nominator in (2.13) and a power series expansion as numerator, stopping 
after the second term. That is, we put 

I,(I)zl+fz~ 

Then we obtain from (2.13) 

u* = Ul ___$.&+_. 2i)_!!+f2xH’bph+_ir,~~rj +a+ 
uo 

(2.26) 

To find the inverse transformation of (2.26) we may use formula (3.91) 
from the book (191, p. 154), according to which the transform 

hV/l ,-aVX 

correqonds to the original fun:tion 

I/ ~(2x,)+ cxp+,_, (*) 

where D, is the Weber function. In the case we are considering the argu- 
ments of the Weber functions will be 
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J R 1/ hP 
-9 
221 2x1 

As was remarked earlier, for large Reynolds numbers R and for small 

distances x1 frcm the entrance the arguments of the Weber functions will 

be sufficiently large so that we may use the leading term of the asymp- 

totic expansion (I 10 1 , p. 347); 

Dn(z)wznexp -f 
( > 

l’hus the transforms X1’4 exp [-\I(XR)] and X5’4 exp [-d/(X] will 

correspond approximately to the following functions; 

(2.27) 

For snal,l values of x 

$ 

and large values of R the reduced expressions 

(2.27) for the original unctions will be relatively -11, and therefore 

as a first rough approximation we may ne lect all terms in the expressions 

(2.26) containing the factor exp [- 4 i-p h R )] . Proceeding now to the inverse 

transformation, we obtain 

uo P-P1 u=u~--- 
yM2 7’ 

T=T,+T,~~ (2.28) 

It follows from the approximate formulas (2.28) that the velocity in- 

creases, but the temperature decreases, when the pressure decreases along 

the axis of the pipe. 

In order to obtain more accurate formulas for the variation of the 

pressure, velocity, and temperature along the pipe we have to expand the 

right-hand sides of (2.15) and (2.13) as sinple fractions according to 

the roots of the denominator of (2.15). At present it can be said that 

the nature of these roots is fully established only for the case of 

Prandtl number P equal to unity. If we use the recurrence formula 

xl, (2) = 1, (r) + 511’ (9 

then we obtain in the case P = 1 the following transcendental equation 

from which to determine the roots of the denominator of (2.15); 

We> + 

Putting dI(XR) = ir, we obtain from (2.29) 

(2.29) 

“‘“;,I;, M2 J, (5)+ 5Jl’ (2) =o (2.30) 

kgarding equation (2.30) it is known ([ 111 , p. 482) that if the in- 
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equality 

(2.31) 

is satisfied then two roots of equation (2.30) will be purely imaginary, 
snd all the remaining roots will be real, 'Ihe inequality (2.31) will be 
satisfied on satisfying the inequality (2.22). Consequently if the gas 
flow ahead of the pipe entrance is subsonic, and if the Prandtl number is 
equal to unity, then one root of equation (2.29) (with respect to A) will 
be real and positive, Aile an infinite number of roots will be real, 
negative, and simple. For this reason we obtain, on expanding the rigbt- 
hand side of (2.15) in simple fractions, 

(2.32) 

where 

(2.33) 

Substituting the expression (2.15) in (2.13), we obtain as transforms 
for the velocity and temperature 

lA* cpl(V ux 1 -=- 10 (PI VJAR) 
h 92(h) =u, -x-- hf,(Y'hH) L 1 - 
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where the xk are the negative roots of equation (2.29) and the A,’ are 
connected with the root: nf the equation JO(v) = 0 by the relationship 

hk’ = - $ (2.35) 

‘Ihe coefficients entering in the expansion (2.34) are of the form 

Jo hJ/o 
-+ 

2(-f--1) 
J 1 (v/o wk 

c, + p 
P - (VkZ / 4 

If we denote the real roots of equation (2.30) by yk; that is, if we 

Put 

l/h> ‘= irk, )ik = -‘$ (2.37) 

and if we proceed from the transforms (2.32) and (2.34) to the original 

functions, we obtain the following formulas for pressure, velocity and 
temoerature: 

(2.38) 

. 

u A’ I, I(? / a) I/~Gfi -zzz 
vo 

-- I_ 
yw 

[ lo w=j 1 exp $ + Bl’exp ++ 

+ ,$, [Bk eXp (- $ $) + -61k’ eXp (- $ -$)I 

T T3 -=- 
70 To +u 

y--l A’ 

L 

I- lo Ifr / a) l&q 

lo (I/AK) 1 exp x$+D”exp~+ 

+ k$l [ Dk ‘2Xp (- $ ‘$) + Dk exp (- $ $)] 
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As ms ranarked above, the approximate equations (2.1) may be ccm- 
aidered correct only for the entrance section of the pipe. For this 
reason, arbitrarily large values csnnot be assipgmd to the ratio x/a in 
the formulas (2.38) just obtained. Owing to the presence of the positive 
real root Xc, the terms in (2.38) with the factor exp (X,x/a) will grow 
indefinitely; however, the sigrr of these terms depends on the sign of 
the coefficient A’, We will now show that the sign of the denominator of 
the expression for A* will always be positive. According to the notation 
of (2.32) we have 

(2.39) 

then the graph of the expression in brackets in ( 2.39) will approach the 

axis of abscissas from below at the point x = \/7X$. lhat is, 

and therefore 

lhus the sign 
the numerator in 
fied the sign of 
expression: 

of the coefficient A’ will be determined by the sign of 
(2.33). However, because the inequality (2.22) is satis- 
the numerator will depend on the sign of the following 

TI - Ta B- TO - (B + &J so (2.40), 

‘Ihe expression (2.40) will certainly be negative if the inequality 

gO> T’;Ta (2.41) 

is satisfied. Consequently, if the gas flow ahead of the pipe entrance is 
subsonic and if the inequality (2.41) is satisfied, then the pressure in 
the pipe can only decrease. At a certain distance fran the entrance this 
pressure will become negative and will increase in magnitude according to 
an exponential law. bder these conditions the temperature will behave in 
a similar way, while the velocity of the fluid particles on the axis of 
the pipe will increase indefinitely. 

If we compare this behavior of the pressure and velocity during the 
development of a gas flow in a pipe with the behavior of these quantities 
during the development of the flow of an incompressible fluid, we can 
detect. an essential difference. In the solution for the problem of flow 
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of an incaqressible fluid in a pipe the pressure always decreases, but 

the gradient of pressure at an infinite distance from the entrance be- 

comes constant; for this reason the velocity on the axis of the pipe only 

grows to a limiting value equal to twice the mean velocity. In the solu- 

tion obtained for the problem of flow of a gas in a pipe, the pressure 

gradient at an infinite distance from the entrance does not become con- 

stant, but the magnitude of this gradient increases indefinitely; hence 

the velocity on the axis also grows indefinitely. ‘lhe latter circuastance 

excludes the possibility that the method used to determine a represent- 

ative length for the entrance region for the flow of an incompressible 

fluid can be extended to gas flows. 

‘Ibe representative length for the entrance region for a gas flow in a 

pipe has to be introduced either through the pressure or through the 

temperature. If we use the fact that the pressure cannot become negative, 

for example, we can obtain from the first equation (2.38) with p = 0 a 

formula for the determination of the possible initial length I, of the 

pipe. Putting p = p2 and x = 1 in the first equation (2.38), we obtain a 

relationship connecting the three undetekned parameters U1, pi, and T1 

at the entrance with the given parameters UO, PO, and TO and the given 

quantities p2 and 1. For the case in which the difference (PO -pz)/po may 
be considered small we may put pi = po, Tl = To. ‘Ihen the discharge of 

gas will be determined by the formula 

Q=p,,$ U, (2.42) 

In other cases we may use the same considerations which have been used 

in gas dynamics ([7 I, p. 48). 

3. If we write the equations for a stationary two-dimensional gas flow, 

neglecting viscosity and linearizing the transport terms in the manner of 

Oseen, we obtain the following approximate equations; 

Ui!p-_J-$, fJav= 1 aP --- 
ax PO OY ’ 

vap+a~+$=o (3.1) 
puaL 8x 

‘lhese equations have been applied to the flow around a thin profile 

both for the case M < 1 and for the case M > 1. Equations (1.9) differ 

from (3.1) in that certain terms are included to account for viscosity, 

while the inertial term UJ V/ J x is dropped in conformity with the 

assumptions of the boundary layer. Consequently, equation (1.9) may also 

be applied to the case M > 1. lhe formulas obtained in Part 1 will be 
suitable for the case M > 1 except for the conclusions which were estab- 

blished by the use of the inequality (2.22). In the case M > 1 ahead of 

the pipe entrance a shock wave will appear, and the quantities II , pi, 
and T1 for the gas at the entrance will then be connected with de 
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quantities UO, PO, and TO by the usual relationships for shock waves. 
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